根据公式(m^2)+(n^2)>=2mn
有(xy)^2=(a^2+b^2)(c^2+d^2)= (a^2)(c^2)+ (b^2)(d^2)+( (a^2)(d^2)+ (c^2)(b^2) )
>= (a^2)(c^2)+ (b^2)(d^2)+ 2abcd
即(xy)^2 >=( ac+bd)^2
有因为它们都是正实数,所以xy >=ac+bd
根据公式(m^2)+(n^2)>=2mn
有(xy)^2=(a^2+b^2)(c^2+d^2)= (a^2)(c^2)+ (b^2)(d^2)+( (a^2)(d^2)+ (c^2)(b^2) )
>= (a^2)(c^2)+ (b^2)(d^2)+ 2abcd
即(xy)^2 >=( ac+bd)^2
有因为它们都是正实数,所以xy >=ac+bd