在折叠后的三棱锥上,作AH⊥平面BCD,
则H在CD上,即是A在平面BCD上的射影,
AD=1,AB=√2,BD=√3,
∵BC⊥CD,而AH∈平面ACD,
AH⊥平面BCD,
∴平面ACD⊥平面BCD,
∴BC⊥平面ACD,
∵AC∈平面ACD,
∴BC⊥AC,
根据勾股定理,
AC=1,△ABC是等腰RT△,
根据勾股逆定理,
△ADC也是等腰RT△,
AE=BD/2=√3/2,
CE=BD/2=√3/2,
要求出D至平面ACE的距离,可以用等体积法,求出三棱锥A-DCE体积,再求出三角形ACE面积,即可求出D至平面ACE的距离.
在三角形DAC中,
AH=CD/2=√2/2,
S△DCE= S△BCD/2=√2/2/2=√2/4,
V三棱锥A-CDE=AH* S△DCE/3=1/12,
在平面ACE中作EF⊥AC,
三角形AEC是等腰三角形,
EF=√2/2,
S△ACE=AC*EF/2=√2/4,
设D点至平面ACE距离为d,
VD-ACE= S△ACE*d/3=d√2/12,
V三棱锥A-CDE= V三棱锥D-ACE,
d√2/12=1/12,
d=√2/2,
∴D至平面ACE距离为√2/2.