(1)证明:∵x,y,z∈(0,+∞),a>0,b>0,c>0
∴(x+y+z)(
a2
x+
b2
y+
c2
z)=a2+b2+c2+
xb2
y+
ya2
x+
xc2
z+
za2
x+
yc2
z+
zb2
y
≥a2+b2+c2+2ab+2ca+2cb=(a+b+c)2
∴(x+y+z)(
a2
x+
b2
y+
c2
z)≥(a+b+c)2
∴
a2
x+
b2
y+
c2
z≥
(a+b+c)2
x+y+z
当且仅当[x/a=
y
b=
z
c]时,等号成立------------------(6分)
(2)①f(x)=
1
x+
4
1−2x+
25
1+x=
12
x+
22
1−2x+
52
1+x≥
(1+2+5)2
x+1−2x+1+x=
64
2=32
∴f(x)的最小值是32,当且仅当