令x=1/t,则dx=-dt/t^2;x∈[-3,-2],t∈[-1/3,-1/2];
∴∫(-3,-2)dx/x^2√(x^2-1)=∫(-1/3,-1/2)(-dt/t^2)t^2*t/√(1-t^2)
=∫(-1/3,-1/2)(1/2)d(1-t^2)/√(1-t^2)
=√(1-t^2)I(-1/3,-1/2)
=√[1-(-1/2)^2]-√[1-(-1/3)^2
=(3√3-4√2)/6
令x=1/t,则dx=-dt/t^2;x∈[-3,-2],t∈[-1/3,-1/2];
∴∫(-3,-2)dx/x^2√(x^2-1)=∫(-1/3,-1/2)(-dt/t^2)t^2*t/√(1-t^2)
=∫(-1/3,-1/2)(1/2)d(1-t^2)/√(1-t^2)
=√(1-t^2)I(-1/3,-1/2)
=√[1-(-1/2)^2]-√[1-(-1/3)^2
=(3√3-4√2)/6