解题思路:因集合A是方程ax2-3x+2=0的解集,欲使集合A={x|ax2-3x+2=0}至多有一个元素,只须此方程有两个相等的实数根或没有实数根,
或只有一个实根,下面对a进行讨论求解即可.
∵集合A={x|ax2-3x+2=0}至多有一个元素,
分类讨论:
①当a=0时,A={x|-3x+2=0}只有一个元素,符合题意;
②当a≠0时,要A={x|ax2-3x+2=0}至多有一个元素,
则必须方程:ax2-3x+2=0有两个相等的实数根或没有实数根,
∴△≤0,得:9-8a≤0,∴a≥[9/8],
综上所述:a≥
9
8或a=0.
故选B.
点评:
本题考点: 元素与集合关系的判断.
考点点评: 本小题主要元素与集合关系的判断、不等式的解法等基础知识,考查运算求解能力,考查分类讨论、化归与转化思想.属于基础题.