已知函数f(x)=2(根号3)sinxcosx+2cos(^2)x-t

1个回答

  • (1) f(x)=2√3sinxcosx+2cos^2-t.

    =√3sin2x+1+cos2x-t.

    =2[(√3/2sin2x+(1/2)cos2x]+1-t.

    =2sin(2x+π/6)+1-t.

    令 f(x)=0,则,2sin(2x+π/6)+1-t=0.

    由x∈[0,π/2],得π/6≤2x+π/6≤7π/6,所以,-1/2≤sin(2x+π/6)≤1,

    故0≤2sin(2x+π/6)+1≤3

    ∵t∈[0,3].

    (2) f(x)=2sin(2x+π/6)+1-t.

    若t=3,f(A)=-1,

    f(A)=2sin(2A+π/6)+1-3=-1.

    2sin2A+π/6=1.

    sin(2A+π6)=1/2.

    2A+π/6=π/6,--->A=0 不合题设要求,舍去.

    或2A+π/6=5π/6.

    2A=5/6-π/6=2π/3.

    ∴ A=π/3.

    ∵b+c=2.

    由三角形的边的关系:两边之和大于第三边,即 b+c>a,∴a