已知数列{an}满足a1=1,a2=2,an+1+anan=an+2−an+1an+1(n∈N*),则a200=(  )

1个回答

  • 解题思路:由数列{an}满足a1=1,a2=2,

    a

    n+1

    +

    a

    n

    a

    n

    a

    n+2

    a

    n+1

    a

    n+1

    (n∈

    N

    *

    )

    ,知

    a

    n+2

    a

    n+1

    a

    n+1

    a

    n

    =2

    ,故

    a

    n+1

    a

    n

    =2+2(n−1)=2n

    ,由此能导出

    a

    n

    =(n−1)!•

    2

    n−1

    ,从而能求出a200

    数列{an}满足a1=1,a2=2,

    an+1+an

    an=

    an+2−an+1

    an+1(n∈N*),

    an+1

    an+1=

    an+2

    an+1−1,

    an+2

    an+1−

    an+1

    an=2,

    {

    an+1

    an}为等差数列,公差d=2,

    an+1

    an=2+2(n−1)=2n,

    当n≥2时,

    a2

    a1=2,

    a3

    a2=4,

    a4

    a3=6,

    a5

    a4=8,

    an

    an−1=2(n−1),

    an

    a1=2×4×6×…×2(n−1)

    =2n-1×(n-1)!

    ∴an=(n−1)!•2n−1,

    ∴a200=2199•199!.

    故选A.

    点评:

    本题考点: 数列递推式.

    考点点评: 本题考查数列的递推式的应用,考查运算求解能力,考查推导论证能力,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化.