(1)原式=∫(1,e)2dx+∫(1,e)lnx/xdx
=2∫(1,e)dx+∫(1,e)lnxd(lnx)
=[2x+(lnx)²/2]|(1,e)
=2e+1/2-2-0
=2e-3/2
(2)原式=1/2∫(0,2)d(1+x²)/(1+x²)²
=[(-1/2)/(1+x²)]|(0,2)
=-1/2(1/5-1)
=2/5
(1)原式=∫(1,e)2dx+∫(1,e)lnx/xdx
=2∫(1,e)dx+∫(1,e)lnxd(lnx)
=[2x+(lnx)²/2]|(1,e)
=2e+1/2-2-0
=2e-3/2
(2)原式=1/2∫(0,2)d(1+x²)/(1+x²)²
=[(-1/2)/(1+x²)]|(0,2)
=-1/2(1/5-1)
=2/5