设f(x)=mx2+3(m-4)x-9

1个回答

  • (1)

    △ = [3(m - 4)]² - 4m×(-9)

    = 9(m² - 8m + 16) + 36m

    = 9(m² - 4m + 16)

    = 9(m - 2)² + 108

    > 0

    所以f(x)有两个零点

    (2)

    设两个零点分别是 x1 和 x2 ,则

    x1 + x2 = 3(4 - m)/m

    x1 * x2 = -9/m

    (x1 - x2)²

    = (x1 + x2)² - 4x1*x2

    = 9(4 - m)²/m² + 36/m

    = 9(16/m² - 4/m + 1)

    = 9(16/m² - 4/m + 1/4) + 27/4

    = 9(4/m - 1/2)² + 27/4

    当 4/m = 1/2 ,即 m = 8 时 ,最小值是 27/4

    两个零点的距离的最小值

    = |x1 - x2|

    = √(x1 - x2)²

    = √(27/4)

    = 3√3/2

    (3)

    m = 1 时,

    f(x)

    = x² - 9x - 9

    = (x - 9/2)² - 117/4

    因为 x∈[0 ,2]

    所以当 x = 2 时 ,

    f(x)取 最小值 -23

    f(x) - a > 0

    a < f(x)

    所以 a < f(x)的最小值

    所以 a < -23