很简单,展开计算即可.以下记^T为转置,'为逆矩阵.
B=(A+I)(A-I)',
则B^T=[(A+I)(A-I)']^T
=(A-I)'^T(A+I)^T
=(A^T-I^T)'(A^T+I^T)
=(A+I)'(A-I).
其中用到了A^T=-A.
于是,B^TB=(A+I)'(A-I)(A+I)(A-I)'
=(A+I)'(A+I)(A-I)(A-I)'
=I,
同理BB^T=I.
其中用到了A+I和A-I可交换.
于是B是正交矩阵,证毕.
很简单,展开计算即可.以下记^T为转置,'为逆矩阵.
B=(A+I)(A-I)',
则B^T=[(A+I)(A-I)']^T
=(A-I)'^T(A+I)^T
=(A^T-I^T)'(A^T+I^T)
=(A+I)'(A-I).
其中用到了A^T=-A.
于是,B^TB=(A+I)'(A-I)(A+I)(A-I)'
=(A+I)'(A+I)(A-I)(A-I)'
=I,
同理BB^T=I.
其中用到了A+I和A-I可交换.
于是B是正交矩阵,证毕.