线性代数,w^3=1,w可以是复数吗

1个回答

  • 解: 由已知 w^3-1=0

    所以 (w-1)(w^2+w+1)=0

    若w=1 行列式=0

    若w≠1, 则 w^2+w+1 = 0. (w必为复数)

    用Laplace定理按1,2行展开

    D =

    1 1

    1 w

    *

    1 1 c1 1

    1 w^2 c2 w

    1 w c3 w^2

    0 0 w 0

    + (-1)^(1+2+1+5)*

    1 1

    1 w^2

    *

    b1 1 1 1

    b2 1 w^2 w

    b3 1 w w^2

    w^2 0 0 0

    + (-1)^(1+2+2+5)*

    1 1

    w w^2

    *

    a1 1 1 1

    a2 1 w^2 w

    a3 1 w w^2

    1 0 0 0

    = [(w-1)(-w) -(w^2-1)(-w^2) - (w^2-w)]*

    1 1 1

    1 w^2 w

    1 w w^2

    = [(w-1)(-w) -(w^2-1)(-w^2) - (w^2-w)]*(w^4-3w^2+2w)

    = (w^4-3w^2+2w)(w^4-3w^2+2w)

    = (-3w^2+3w)^2

    = (-3(-w-1)+3w)^2

    = (6w+3)^2

    = 9(4w^2+4w+1)

    = 9(4(-w-1)+4w+1)

    = 9*(-3)

    = -27.