解: 由已知 w^3-1=0
所以 (w-1)(w^2+w+1)=0
若w=1 行列式=0
若w≠1, 则 w^2+w+1 = 0. (w必为复数)
用Laplace定理按1,2行展开
D =
1 1
1 w
*
1 1 c1 1
1 w^2 c2 w
1 w c3 w^2
0 0 w 0
+ (-1)^(1+2+1+5)*
1 1
1 w^2
*
b1 1 1 1
b2 1 w^2 w
b3 1 w w^2
w^2 0 0 0
+ (-1)^(1+2+2+5)*
1 1
w w^2
*
a1 1 1 1
a2 1 w^2 w
a3 1 w w^2
1 0 0 0
= [(w-1)(-w) -(w^2-1)(-w^2) - (w^2-w)]*
1 1 1
1 w^2 w
1 w w^2
= [(w-1)(-w) -(w^2-1)(-w^2) - (w^2-w)]*(w^4-3w^2+2w)
= (w^4-3w^2+2w)(w^4-3w^2+2w)
= (-3w^2+3w)^2
= (-3(-w-1)+3w)^2
= (6w+3)^2
= 9(4w^2+4w+1)
= 9(4(-w-1)+4w+1)
= 9*(-3)
= -27.