(I)f′(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex
∵f(x)有三个极值点,∴x3-3x2-9x+t+3=0有三个根,
令g(x)=x3-3x2-9x+t+3,g′(x)=3x2-6x-9=3(x+1)(x-3)
∴g(x)在(-∞,-1),(3,+∞)上递增,(-1,3)上递减,
∵g(x)有三个零点,
∴
g(?1)>0
g(3)<0
∴-8<t<24…(4分)
(II)不等式f(x)≤x,即(x3-6x2+3x+t)ex≤x,即t≤xe-x-x3+6x2-3x.
转化为存在实数t∈[0,2],使对任意的x∈[1,m],不等式t≤xe-x-x3+6x2-3x恒成立.
即不等式0≤xe-x-x3+6x2-3x在x∈[1,m]上恒成立.
即不等式0≤e-x-x2+6x-3在x∈[1,m]上恒成立…(6分)
设φ(x)=e-x-x2+6x-3,则φ(x)=-g-x-2x+6.
设r(x)=φ(x)=-g-x-2x+6,则r′(x)=g-x-2,因为1≤x≤m,有r′(x)<0.
故r(x)在区间[1,m]上是减函数…(8分)
又r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=-e-3<0
故存在x0∈(2,3),使得r(x0)=φ′(x0)=0.
当1≤x<x0时,有φ′(x)>0,当x>x0时,有φ′(x)<0.
从而y=φ(x)在区间[1,x0)上递增,在区间(x0,+∞)上递减…(10分)
又φ(1)=e-1+4>0,φ(2)=e-2+5>0,φ(3)=e-3+6>0
φ(4)=e-4+5>0,φ(5)=e-5+2>0,φ(6)=e-6-3<0
所以当1≤x≤5时,恒有φ(x)>0;当x≥6时,恒有φ(x)<0;
故使命题成立的正整数m的最大值为5.…(12分)