(1)由余弦定理:c^2=a^2+b^2-2abCosC可得
CosC=(a^2+b^2-c^2)/2ab
即得到:Cos∠ABC=(AB^2+BC^2-AC^2)/2AB·BC
又由 AB^2+BC^2-AC^2=PA^2+PB^2+PB^2+PC^2-PA^2-PC^2=PB^2>0
故 Cos∠ABC>0 所以∠ABC
(1)由余弦定理:c^2=a^2+b^2-2abCosC可得
CosC=(a^2+b^2-c^2)/2ab
即得到:Cos∠ABC=(AB^2+BC^2-AC^2)/2AB·BC
又由 AB^2+BC^2-AC^2=PA^2+PB^2+PB^2+PC^2-PA^2-PC^2=PB^2>0
故 Cos∠ABC>0 所以∠ABC