解这道题要用到“两个数的算数平均数不小于两个数的几何平均数”公式.也就是(a+b)/2>=(ab)^1/2(就是a和b的算术平方根).
(2x+y)/2>=[(2x)*y]^1/2(两边乘2得)
:2x+y>=2[(2x)*y]^1/2(两边再加上6得)
2x+y+6>=2[(2x)*y]^1/2+6(把2x+y+6=xy代入得)
xy>=2[(2x)*y]^1/2+6(移项整理得)
xy-2[(2x)*y]^1/2-6>=0,设Z=(xy)^1/2(xy的算术平方根)得
Z^2-2*2^1/2Z-6>=0
当:Z^2-2*2^1/2Z-6=0时求得Z1=3*2^1/2,Z2=-2^1/2
二次项系数大于零可知抛线开口向上,得,Z>=3*2^1/2,Z==3*2^1/2.(xy)^1/2==9*2=18
所以,xy的最小值是18.