令 F(x) = f(a+x)-f(x) 则F(x)在[0,2a]上连续
F(a) = f(2a)-f(a)=f(0)-f(a)
F(0) = f(a)-f(0) =-F(a)
由闭区间连续函数介值定理,必然存在一点ξ,使得F(X)的值为0
即是题目所要你证明的等式f(ξ)=f(ξ+a)
令 F(x) = f(a+x)-f(x) 则F(x)在[0,2a]上连续
F(a) = f(2a)-f(a)=f(0)-f(a)
F(0) = f(a)-f(0) =-F(a)
由闭区间连续函数介值定理,必然存在一点ξ,使得F(X)的值为0
即是题目所要你证明的等式f(ξ)=f(ξ+a)