如图所示,轻质杠杆OA的中点悬挂一重G=60N的物体,在A端施加一竖直向上的力F,杠杆在水平位置平衡,则F=______

1个回答

  • 解题思路:(1)在A位置如图,OA、OC为动力F和阻力G的力臂,知道C是OA的中点,也就知道两力臂的大小关系,知道阻力G的大小,利用杠杆的平衡条件求动力F的大小;

    (2)在B位置,画出动力和阻力的作用线,找出动力臂的阻力臂,利用三角形的相似关系,确定动力臂和阻力臂的大小关系,再利用杠杆平衡条件分析拉力F的大小变化情况;

    (1)如图,杠杆在A位置,LOA=2LOC

    ∵杠杆平衡,

    ∴FLOA=GLOC

    ∴F=

    G×LOC

    LOA=[1/2]G=[1/2]×60N=30N;

    (2)杠杆在B位置,OA′为动力臂,OC′为阻力臂,阻力不变为G,

    ∵△OC′D∽△OA′B,

    ∴OC′:OA′=OD:OB=1:2,

    ∵杠杆平衡,

    ∴F′LOA′=GLOC′,

    ∴F′=

    G×LOC′

    LOA′=[1/2]G=[1/2]×60N=30N;由此可知当杠杆从A位置匀速提到B位置的过程中,力F的大小不变;

    故答案为:30;不变.

    点评:

    本题考点: 杠杆的平衡分析法及其应用.

    考点点评: 本题考查了学生对杠杆平衡条件的了解和掌握,能画出杠杆在B位置的力臂并借助三角形相似确定其关系是本题的关键.

相关问题