(1)△ABE∽△DEA,△AFD∽△DCE.
(2)∵BC=3BE,
∴设BE=x,则BC=3x,
∴AD=3x,EC=2x,
由△ABE∽△DEA,得: AEAD=BEAE,
∵ AE=23,
∴ 233x=x23,
∴x=2,
又由△AFD∽△DCE,
得DE•DF=AD•EC=3x×2x=6x2,
∴DE•DF=24.
故答案为:24.
(1)△ABE∽△DEA,△AFD∽△DCE.
(2)∵BC=3BE,
∴设BE=x,则BC=3x,
∴AD=3x,EC=2x,
由△ABE∽△DEA,得: AEAD=BEAE,
∵ AE=23,
∴ 233x=x23,
∴x=2,
又由△AFD∽△DCE,
得DE•DF=AD•EC=3x×2x=6x2,
∴DE•DF=24.
故答案为:24.