设 函数f(x)在区间(a b ) 上连续,则d /dx 求∫ b 上 a下 f(x) dx
1个回答
则d /dx
假设f(x)的一个原函数是F(x)
则∫ b 上 a下 f(x) dx
=F(b)-F(a)
相关问题
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
设函数f(x)在[a,b]上连续,∫[a,b]f(x)dx=∫ [a,b]xf(x)dx=0
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
求定积分做法设f(x)在区间[a,b]上连续,且f(x)>0,证明在a到b的积分f(x)dx.dx/f(x)>=(b-a
设f(x)在[a,b]上连续,且∫(a到b)f(x)dx=1,求∫(a到b)f(a+b-x)dx.
证明:若函数f(x)和g(x)在区间[a,b]上连续,则有│ ∫ f(x)dx│≤∫ │f(x)│dx. ∫ 符号的上下
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)d