n=(-1)^(n+1)*2^(n+1)
数列bn,b1=4,b2=-8,b3=16,b4=-32,bn=
1个回答
相关问题
-
若数列bn满足4^b1-1*4^b2-1*4^b3-1*……*4^bn-1=(an+1)^bn
-
b1=5,b2=8,b3=17,b4=44,求数列{bn}
-
数列bn满足b1=3/4,且3bn-bn-1=n,求bn
-
若bn=2n+1,求和:b1b2-b2b3+b3b4-b4b5+...+(-1)^(n-1)*bn*bn+1
-
数列{An},{Bn}满足A1=2,B1=1,且An=3/4An-1+1/4Bn-1+1,Bn=1/4An-1+3/4B
-
已知数列{bn},bn=2^(n+2)+2n-1,求b1+b2+b3+.+bn
-
设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3,若{an+1 -an}是等差数列,{bn+1-bn
-
设数列{an}、{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,{bn
-
数列bn是等比数列,则b1+b2+b3=21/8,b1b2b3=1/8,数列an中,an=log2bn,求an的通项公式
-
数列{bn}(n∈N+)是递增的等比数列,且b1+b3=5,b1b3=4,(1)求数列{bn}的通项公式