y^2=2px=4x
所以:p=2
焦点坐标为:F(p/2,0)=F(1,0)
准线为x=-p/2=-1 准线:x=-1
FA+FB+FC=0说明 F点是△ABC的重心.
A(Xa^2/4,Xa) B(Xb^2/4,Xb) C(Xc^2/4Xc)
重心的坐标为:F(((Xa^2/4)+(Xb^2/4)+(Xc^2/4))/3,((Xa+Xb+Xc)/3)
重心的坐标应该等于焦点的坐标:
所以有:((Xa^2/4)+(Xb^2/4)+(Xc^2/4))/3=1,((Xa+Xb+Xc)/3)=0
可得:Xa^2/4)+(Xb^2/4)+(Xc^2/4)=3
|FA|=Xa^2/4-(-p/2) =Xa^2/4+1
|FB|=Xb^2/4-(-p/2) =Xb^2/4+1
|FC|=Xc^2/4-(-p/2) =Xc^2/4+1
所以:|FA|+|FB|+|FC|=(Xa^2/4)+(Xb^2/4)+(Xc^2/4)+3=6
(抛物线的离心率为1,到焦点的距离等于到准线的距离)