设F为抛物线Y^2=4X的焦点,ABC为该抛物线上的三点,若向量FA+FB+FC=0向量,则|FA|+|FB|+|FC|

1个回答

  • y^2=2px=4x

    所以:p=2

    焦点坐标为:F(p/2,0)=F(1,0)

    准线为x=-p/2=-1 准线:x=-1

    FA+FB+FC=0说明 F点是△ABC的重心.

    A(Xa^2/4,Xa) B(Xb^2/4,Xb) C(Xc^2/4Xc)

    重心的坐标为:F(((Xa^2/4)+(Xb^2/4)+(Xc^2/4))/3,((Xa+Xb+Xc)/3)

    重心的坐标应该等于焦点的坐标:

    所以有:((Xa^2/4)+(Xb^2/4)+(Xc^2/4))/3=1,((Xa+Xb+Xc)/3)=0

    可得:Xa^2/4)+(Xb^2/4)+(Xc^2/4)=3

    |FA|=Xa^2/4-(-p/2) =Xa^2/4+1

    |FB|=Xb^2/4-(-p/2) =Xb^2/4+1

    |FC|=Xc^2/4-(-p/2) =Xc^2/4+1

    所以:|FA|+|FB|+|FC|=(Xa^2/4)+(Xb^2/4)+(Xc^2/4)+3=6

    (抛物线的离心率为1,到焦点的距离等于到准线的距离)