你做的似乎是错误的
a^2+b^2=p^2,x^2+y^2=q^2(p>0,q>0)
(a^2+b^2)(x^2+y^2)=a^2x^2+b^2y^2+a^2y^2+b^2x^2
=(a^2x^2+b^2y^2+2axby)+(a^2y^2+b^2x^2-2aybx)
=(ax+by)^2+(ay-bx)^2=p^2q^2
=>(ax+by)^2=p^2q^2-(ay-bx)^2 =>ax+by=根号[p^2q^2-(ay-bx)^2]
∵(ay-bx)^2>=0,
∴只有当(ay-bx)^2=0时
ax+by=根号[p^2q^2-(ay-bx)^2]才有最大值为根号(p^2q^2)=pq