解题思路:利用等差数列的性质求得
a
n
b
n
=
s
2n−1
T
2n−1
,然后代入
S
n
T
n
=[2n/3n+1]即可求得结果.
∵
an
bn=
2an
2bn=
a1+a2n−1
b1+b2n−1=
(2n−1)(a1+a2n−1)
2
(2n−1)(b1+b2n−1)
2=
s2n−1
T2n−1
∴
an
bn=
2(2n−1)
3(2n−1)+1=[2n−1/3n−1]
故选B.
点评:
本题考点: 等差数列的性质.
考点点评: 此题考查学生灵活运用等差数列通项公式化简求值,做题时要认真,是一道基础题.