limn→∞arctan(n!)×(根号n+1-根号n)^2=
2个回答
答案是0
n趋于无穷大时,arctann! 为π/2
而[√(n+1)-√n]^2为0
因此原式为0
相关问题
Limn趋于无穷〔根号(n+2)-根号(n+1)+根号n]
limn→∞根号(n^2+1)/n+1
limn→∞ n根号下(2∧n+3∧n)怎么求,
LIM[根号(N+1)-根号(N)]/[根号(N+2)-根号(N)]
lim(n→∞)(根号n+2-根号n)*根号n-1=?
根号(1×2×3+2×4×6+…+n×2n×3n)÷根号(1×5××10+2×10×20+…+n×5n×10n)=?
(n+1)-根号(n+1)^2+1/n-根号n^2+1=n+根号n^2+1/(n+1)+根号(n+1)^2+1 前一步到
设x=根号n+1-根号n/根号n+1+根号n y=根号n+1+根号n/根号n+1-根号n n为自然数若
设x=根号n+1 - 根号n / 根号n+1 + 根号n,y=根号n+1 +根号n / 根号n+1 - 根号n,若10x
证明limn趋向于无穷时(sin根号n-sin根号下(n+1) ) =0 求详细步骤