解题思路:(1)①利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;
②利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;
(2)①利用HL定理证明△BAE≌△DAG即可;
②利用△EFH≌△GAD,△EFH≌△ABE,即可得出GD=FH=CH=4,再利用△CFH的面积公式求出.
(1)①△BAE≌△DAG.理由如下:
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG.
∴△BAE≌△DAG;
②CH=BE.理由如下:
由已知可得∠EAG=∠BAD=∠AEF=90°,
由①得∠FEH=∠BAE=∠DAG,
又∵G在射线CD上,
∠GDA=∠EHF=∠EBA=90°,AG=AE=EF,
∴∠BAE=∠DAG=∠EFH,
∴△EFH≌△GAD,△EFH≌△ABE,
∴EH=AD=BC,
∴CH=BE.
(2)①△BAE≌△DAG.理由如下:
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠ADG=∠ABE=90°,
∴在Rt△BAE与Rt△DAG中,
∴△BAE≌△DAG;(HL)
②由(1)同理可得:△EFH≌△AGD,△EFH≌△AEB,
∴GD=FH=CH=4,
∴△CFH的面积为:[1/2]FH•CH=[1/2]×4×4=8.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 此题考查了相似三角形的判定与性质;正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例,综合性较强,有一定的难度.