原式=(x^2+y^2)2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^4+2x^2y^2
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2
原式=(x^2+y^2)2-2x^2y^2+(x+y)^4
=[(x+y)^2-2xy]^2-2x^2y^2+(x+y)^4
=2(x+y)^4-4xy(x+y)^4+2x^2y^2
=2[(x+y)^2-xy]^2
=2(x^2+xy+y^2)^2