(1)连结DF,
∵CD⊥BG,∠ABC=90°
∴∠ABG+∠GBC=∠GBC+∠DCB,
∴∠ABG=∠BCD,
又∵∠GAB=∠ABC=90°,AB=BC,
∴△ABG≌△BCD,
∴AG=BD,
又∵AD=BD,
∴AG=AD,
又∵∠GAF=∠BAC=45°,AF=AF,
∴△AFG≌△AFD,
∴∠G=ADF,
又∵∠G=∠FBC,
∴∠ADF=∠FBC,
又∵∠DAF=∠BCF=45°,
∴△DAF∽△BCF,
∴AF/CF=AD/BC=1/2,
∴AF/AC=1/3
(2)S△AFG=S△AFD=1/2S△AFB=1/2×1/3S△ABC=1/6S△ABC,
∴S△AFG/S△ABC=1/6