3^a=10,log6 25=b.用a,b表示以log4 45=?
aln3=ln10=ln5+ln2,b=log6 25=ln25/ln6=2ln5/(ln2+ln3)
aln3=ln5+ln2,b=2ln5/(ln2+ln3)
aln3=ln5+ln2,2ln5=bln2+bln3
ln3=[(2+b)/(2a-b)]ln2
ln5=[b(a+1)/(2a-b)]ln2
log4 45=ln45/ln4
=(2ln3+ln5)/(2ln2)
={2[(2+b)/(2a-b)]ln2+[b(a+1)/(2a-b)]ln2}/(2ln2)
=[2(2+b)/(2a-b)+b(a+1)/(2a-b)]/2
=(4+3b+ab)/(4a-2b)