f(x)=a·b+√3/2
=sinx·cosx+(-cosx)·√3cosx+√3/2
=sinx·cosx-√3cos^2(x)+√3/2
=1/2sin2x-√3/2[cos^2(x)-1]
=1/2sin2x-√3/2cos2x
=sin2xcos60°-sin60°cos2x
=sin(2x-π/3)
∴f(x)的最小正周期=2π/2=π
当0=
f(x)=a·b+√3/2
=sinx·cosx+(-cosx)·√3cosx+√3/2
=sinx·cosx-√3cos^2(x)+√3/2
=1/2sin2x-√3/2[cos^2(x)-1]
=1/2sin2x-√3/2cos2x
=sin2xcos60°-sin60°cos2x
=sin(2x-π/3)
∴f(x)的最小正周期=2π/2=π
当0=