设O是A1D中点.G是AD中点.H是OD中点.
⑴OF‖=EC∴OECF是平行四边形,CF‖EOEO∈平面A1DE.∴CF‖平面A1DE.
⑵EG⊥AA1D,GH⊥A1D(∵GH‖AO中位线)∠EHG是二面角E-A1D-A的平面角.
GH=AO/2=√2/2.HE=√[EG²+GH²]=3/√2cos∠EHG=GH/HE=1/3
设O是A1D中点.G是AD中点.H是OD中点.
⑴OF‖=EC∴OECF是平行四边形,CF‖EOEO∈平面A1DE.∴CF‖平面A1DE.
⑵EG⊥AA1D,GH⊥A1D(∵GH‖AO中位线)∠EHG是二面角E-A1D-A的平面角.
GH=AO/2=√2/2.HE=√[EG²+GH²]=3/√2cos∠EHG=GH/HE=1/3