悬空的物体相对于地球静止,它就跟地球同步自转.
理论上,它离地球多远都逃不掉地球的引力,只是离得太远就会受其它星体的引力更大一些,相对脱离了地球引力.
当他达到第一宇宙速度,约为7.9千米/秒能环绕地球在最低的圆形轨道上运行;达到第二宇宙速度,约为11.2千米/秒脱离地球引力;达到第三宇宙速度,约为16.7千米/秒飞出太阳系.
第一宇宙速度(又称环绕速度):是指物体紧贴地球表面作圆周运动的速度.
第二宇宙速度(又称脱离速度):是指物体完全摆脱地球引力束缚,飞离地球的所需要的最小初始速度.
第三宇宙速度(又称逃逸速度):是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最小初始速度.其大小为16.7千米/秒.
环绕速度和逃逸速度也可应用于其他天体.例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可.
从研究两个质点在万有引力作用下的运动规律出发,人们通常把航天器达到环绕地球、脱离地球和飞出太阳系所需要的最小速度,分别称为第一宇宙速度、第二宇宙速度和第三宇宙速度.
第一宇宙速度(V1)航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度.按照力学理论可以计算出V1=7.9公里/秒.航天器在距离地面表面数百公里以上的高空运行,地面对航天器引力比在地面时要小,故其速度也略小于V1.
第二宇宙速度(V2)当航天器超过第一宇宙速度V1达到一定值时,它就会脱离地球的引力场而成为围绕太阳运行的人造行星,这个速度就叫做第二宇宙速度,亦称逃逸速度.按照力学理论可以计算出第二宇宙速度V2=11.2公里/秒.由于月球还未超出地球引力的范围,故从地面发射探月航天器,其初始速度不小于10.848公里/秒即可.
第三宇宙速度(V3)从地球表面发射航天器,飞出太阳系,到浩瀚的银河系中漫游所需要的最小速度,就叫做第三宇宙速度.按照力学理论可以计算出第三宇宙速度V3=16.7公里/秒.需要注意的是,这是选择航天器入轨速度与地球公转速度方向一致时计算出的V3值;如果方向不一致,所需速度就要大于16.7公里/秒了.可以说,航天器的速度是挣脱地球乃至太阳引力的惟一要素,目前只有火箭才能突破宇宙速度.