几何证明任意画一个三角形ABC,在三角形内部任意取一点O,连接AO BO CO并延长,分别交BC CA AB 于 D E

1个回答

  • 点O是△ABC内的任意一点,作直线AO,BO,CO与边BC,CA,AB,分别交于点D,E,F

    则BD/DC·CE/AE·

    AF/BF=1.

    证明:过A点作AN∥BE,AM∥CF分别交BC的延长线及反向延长线于点N、M.

    因为AN∥BE,所以BD:BN=OD:AO,CE:AE=CB:BN·①

    因为AM∥CF,所以CD:CM=OD:AO,AF:BF=CM:BC·②

    因为BD:BN=OD:AO,CD:CM=OD:AO,所以CD:CM=BD:BN,即BD:CD=BN:CM.③

    由①×②×③得:CE:AE×AF:BF×BD:CD=CB:BN×CM:BC×BN:CM=1,

    即BD:DC·CE:AE·AF:BF=1