在AC上取点G,使AE=AG.
∵AE=AG,AM=AM,∠EAM=∠GAM,∴△AEM≌△AGM,∴EM=GM,∠AEM=∠AGM.
∵AE∥CF,∴∠CFM=180°-∠AEM,显然有:∠CGM=180°-∠AGM,又∠AEM=∠AGM,
∴∠CGM=∠CFM,又CM=CM,∠GCM=∠FCM,△CGM≌△CFM,∴CG=CF.
由AE=AG,CG=CF,得:AG+CG=AE+CF,即:AC=AE+CF.
在AC上取点G,使AE=AG.
∵AE=AG,AM=AM,∠EAM=∠GAM,∴△AEM≌△AGM,∴EM=GM,∠AEM=∠AGM.
∵AE∥CF,∴∠CFM=180°-∠AEM,显然有:∠CGM=180°-∠AGM,又∠AEM=∠AGM,
∴∠CGM=∠CFM,又CM=CM,∠GCM=∠FCM,△CGM≌△CFM,∴CG=CF.
由AE=AG,CG=CF,得:AG+CG=AE+CF,即:AC=AE+CF.