(1)(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc =1 又因为(2)a^2+b^2>=2ab(3) a^2+c^2>=2ac(4)b^2+c^2>=2bc 把五个式子的左边加起来3a^2+3b^2+3c^2+2ab+2ac+2bc 大于等于五个式子右边加起来1+2ab+2ac+2bc就是3a^2+3b^2+3c^2+2ab+2ac+2bc >=1+2ab+2ac+2bc所以a^2+b^2+c^2>=1/3
证明不等式,已知a,b,c属于R+,a+b+c=1,求证a^2+b^2+c^2>=1/3?
1个回答
相关问题
-
不等式的证明证明下列不等式:(1)a,b属于R,求证 a^2+b^2+1>ab+a(2)a,b,c属于R+ ,求证:(a
-
已知a、b、c∈R,且a+b+c=1求证:.a∧2+b∧2+c∧2≥1/3
-
已知a,b,c属于R,a+b+c=1,求证a^2+b^2+c^2>=1/3谢谢了,大神帮忙啊
-
已知a,b,c属于R求证:b^2c^2+c^2a^2+a^2b^2>=abc(a+b+c)
-
均值不等式问题,已知a,b,c属于R,且a/(b+c)=b/(a+c)-c/(a+b),证明b/(a+c)≥(√17-1
-
已知a,b,c属于r+,证明a^2+b^2+c^2+(1÷a+1÷b+1÷c)^2≥6倍根号3,并确定a,b,c
-
不等式 已知 a,b,c均为正数.证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2 ≥ 6√3 ,
-
证明一道高二不等式已知a,b,c是正数,求证a^(2a)*b^(2b)*c^(2c)≥a^(b+c)*b^(a+c)*c
-
已知a,b,c属于R,a^2+b^2+c^2=1.求证,|a+b+c|=(a+b+c)^2对满足题条件的实数a,b,c恒
-
a,b,c属于正实数,已知a/(1+a)+b/(1+b)+c/(1+c)=1,求证:a+b+c大于等于3/2