(1)∵抛物线y=x 2+(2a-1)x+a 2+3a+
17
4 与x轴交于点A(x 1,0),B(x 2,0).
∴b 2-4ac>0,
即(2a-1) 2-4(a 2+3a+
17
4 )>0,
解得a<-1.
(2)设方程x 2+(2a-1)x+a 2+3a+
17
4 =0的两根为x 1,x 2,
∴x 1+x 2=1-2a,x 1•x 2=a 2+3a+
17
4 ,
∵x 1 2+x 2 2=(x 1+x 2) 2-2x 1•x 2=(1-2a) 2-2(a 2+3a+
17
4 )=2(a-
5
2 ) 2-20,
∵a<-1,
∴(a-
5
2 ) 2>
49
4 ,
∴2(a-
5
2 ) 2-20>
9
2 ,
即S>
9
2 .