111.1111=1987N
P=11..11×10的3n次方+9×11..111×10的2n次方+8×111...11×10的n次方+7×11...11=1987N×10的3n次方+9×1987N×10的2n次方+8×1987N×10的n次方+7×1987N 所以P能被1987整除 同样的方法可以证Q
111.1111=1987N
P=11..11×10的3n次方+9×11..111×10的2n次方+8×111...11×10的n次方+7×11...11=1987N×10的3n次方+9×1987N×10的2n次方+8×1987N×10的n次方+7×1987N 所以P能被1987整除 同样的方法可以证Q