解题思路:先联立直线与抛物线方程消去x,利用韦达定理取得y1+y2和y1y2的值,进而根据直线方程求得x1x2的值,最后分别表示出AO,OB的斜率令二者相乘结果得-1解可证明出两线段垂直.
证明:联立直线与抛物线方程得y2-2y-4=0
∴y1+y2=2,y1y2=-4
∴x1x2=(y1+2)(y2+2)=y1y2+2(y1+y2)+4=4
∴
y1y2
x1x2=-1
即(y1/x1)(y2/x2)=-1
kOA=
y1
x1,kOB=
y2
x2
∴kOA•kOB=
y1y2
x1x2=-1
∴OA⊥OB
点评:
本题考点: 抛物线的简单性质.
考点点评: 本题主要考查了直线与抛物线的位置关系.解决的常用即为联立方程,消元后利用韦达定理找到解决问题的突破口.