等式两端同时求导,左端为【变动上限积分】求导,书上都有公式,在推导微积分基本定理那节.
∫[1,x] f(t)dt = xf(x)+x^2 -->
f(x) = f(x)+xf'(x)+ 2x -->
f'(x) = -2
f(x)= -2x + C ,f(1)= -1 -->
C=1
f(x) = 1-2x
【将 x=1 带入:∫[1,x] f(t)dt = xf(x)+x^2 即可得:f(1)=-1;
本题条件:f(1)=-1 多余,本题也用不到方程】
等式两端同时求导,左端为【变动上限积分】求导,书上都有公式,在推导微积分基本定理那节.
∫[1,x] f(t)dt = xf(x)+x^2 -->
f(x) = f(x)+xf'(x)+ 2x -->
f'(x) = -2
f(x)= -2x + C ,f(1)= -1 -->
C=1
f(x) = 1-2x
【将 x=1 带入:∫[1,x] f(t)dt = xf(x)+x^2 即可得:f(1)=-1;
本题条件:f(1)=-1 多余,本题也用不到方程】