I=∫[-∞,+∞]1/(1+x^2)(1+e^x)dx=∫[-∝,+∝]dx/(1+x^2)(1+e^(-x))
2I=∫[-∝,+∝] [1/(1+e^x)+1/(1+e^(-x))]dx/(1+x^2)
=∫[-∝,+∝]dx/(1+x^2)
=arctanx|[-∝,+∝]
=π
I=π/2
I=∫[-∞,+∞]1/(1+x^2)(1+e^x)dx=∫[-∝,+∝]dx/(1+x^2)(1+e^(-x))
2I=∫[-∝,+∝] [1/(1+e^x)+1/(1+e^(-x))]dx/(1+x^2)
=∫[-∝,+∝]dx/(1+x^2)
=arctanx|[-∝,+∝]
=π
I=π/2