Pr:设f(x)=x - ln(1+x) ,x>0.
所以f '(x)=1- 1/(1+x)=x/(x+1)
当x>0时,可知f '(x)>0.
所以f(x)=x - ln(1+x)在(0,+∞)单调递增.
又因为f(x)>f(0)=0.
所以x - ln(1+x).
Pr:设f(x)=x - ln(1+x) ,x>0.
所以f '(x)=1- 1/(1+x)=x/(x+1)
当x>0时,可知f '(x)>0.
所以f(x)=x - ln(1+x)在(0,+∞)单调递增.
又因为f(x)>f(0)=0.
所以x - ln(1+x).