sn=[(n+2)/3] an .(1)
=>S(n-1)=[(n+1)/3]a(n-1).(2)
(1)-(2)
Sn-S(n-1)=[(n+2)/3] an -[(n+1)/3]a(n-1)
=>an=[(n+2)/3] an -[(n+1)/3]a(n-1)
=>[(n+1)/3]a(n-1)={[(n+2)/3] -1}an =[(n-1)/3]an
=>an=[(n+1)/(n-1)a(n-1)
=>a2=3a1=1=3/3
a3=2a2=6/3
a4=(5/3)a3=10/3
a5=(6/4)a4=6/4*10/3=15/3
a6=7/5*a5=7=21/3
a7=8/6*7=28/3
.
a8=36/3=12
a9=45/3=15