∵ sin(α+β)sin(α-β)=1/3
即 (sinα+sinβ)(sinα-sinβ) = 1/3
sin²α-sinβ² = 1/3
1/4sin²2α+sin²β+cos²αcos²α
=1/4(2sinαcosα)²+sin²β+cos²αcos²α
=sinα²cos²α+sin²β+cos²αcos²α
=cos²α(sinα²+cos²α)+sin²β
=cos²α+sin²β
= 1-sin²α+sin²β
= 1-(sin²α-sinβ²)
= 1- 1/3
= 2/3
注:一个特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)