微分方程y''+2y=sinx的通解

1个回答

  • 特征方程:

    r² + 2 = 0

    r = ±√2i

    y = C₁sin(√2x) + C₂cos(√2x)

    令特解p = Asinx + Bcosx

    p'' = - Asinx - Bcosx,代入方程得

    (- Asinx - Bcosx) + 2(Asinx + Bcosx) = sinx

    { - A + 2A = 1 => A = 1

    { - B + 2B = 0 => B = 0

    特p = sinx

    ∴方程通y = C₁sin(√2x) + C₂cos(√2x) + sinx