f(0)=f(0)+f(0)-1=2f(0)-1,所以f(0)=1
f(0)=f(1/2-1/2)=f(1/2)+f(-1/2)-1=f(1/2)-1=1,所以f(1/2)=2
设R上有x1,x2,且x10
f(x2)-f(x1)=f(x2-x1)-1
=f(x2-x1-1/2+1/2)-1
=f(x2-x1-1/2)+f(1/2)-2
=f(x2-x1-1/2)
x2-x1-1/2>0-1/2=-1/2,所以f(x2-x1-1/2)>0
f(x2)-f(x1)>0
所以f(x)单调递增
举例f(x)=2x+1
2(m+n)+1=(2m+1)+(2n+1)-1
f(-1/2)=2(-1/2)+1=0
x>-1/2时,f(x)=2x+1>2(-1/2)+1=0