1)l:y=kx+3,y^2=4x,联立(kx+3)2-4x=0 ===>k2x+(6k-4)x+9=0 △=(6k-4)2-36k2>0===>k<1/3
2)设M为(x,y),设P1(x1,y1)P2(x2,y2)x1+x2=2x,y1+y2=2y
P1,P2在抛物线上y12=4x1①,y22=4x2②
①-②得 (y2-y1)/(x2-x1)=4/2y③,又由l的斜率为(y-3)/x④
③*④=-1得xy-2y-6=0,所以M的轨迹为 xy-2y-6=0
1)l:y=kx+3,y^2=4x,联立(kx+3)2-4x=0 ===>k2x+(6k-4)x+9=0 △=(6k-4)2-36k2>0===>k<1/3
2)设M为(x,y),设P1(x1,y1)P2(x2,y2)x1+x2=2x,y1+y2=2y
P1,P2在抛物线上y12=4x1①,y22=4x2②
①-②得 (y2-y1)/(x2-x1)=4/2y③,又由l的斜率为(y-3)/x④
③*④=-1得xy-2y-6=0,所以M的轨迹为 xy-2y-6=0