已知函数f(x)=2√3sinxcosx+2cos²x-1(x∈R)

4个回答

  • f(x)=2√3sinxcosx+2cos²x-1(x∈R)

    f(x) = 2√3sinxcosx+2cos²x-1

    = √3 * ( 2sinxcosx) + (2cos²x-1)

    = 根号3 sin2x + cos2x

    = 2 (sin2xcosπ/6+cos2xsinπ/6)

    =2 sin(2x+π/6)

    最小正周期:2π/2 = π

    在区间[0,π/2]

    x ∈[0,π/2]

    2x ∈[0,π]

    2x+π/6 ∈[π/6,π+π/6]

    2x+π/6∈[π/6,π/2]时单调增;

    2x+π/6∈[π/2,π+π/6]时单调减

    2x+π/6=π/2时有最大值,2sinπ/2=2

    2x+π/6=π/6时,f(x)=2sinπ/6=1

    2x+π/6=π+π/6时,f(x)=2sin(π+π/6)=-1

    所以最小值-1,最大值2

    f(x0)=6/5

    2 sin(2x0+π/6)=6/5

    sin(2x0+π/6)=3/5.(1)

    x0∈[π/4,π/2]

    2x0∈[π/2,π]

    2x0+π/6 ∈[2π/3,7π/6]

    cos(2x0+π/6) = - 根号{-sin^2(0+π/6)} = - {1-(3/5)^2} = -4/5.(2)

    由(1):sin2x0cosπ/6+cos2x0sinπ/6=3/5

    根号3/2 sin2x0 + 1/2 cos2x0 = 3/5

    根号3 sin2x0 + cos2x0 = 6/5 .(3)

    由(2):cos2x0cosπ/6 - sin2x0sinπ/6 = -4/5

    根号3/2 cos2x0 - 1/2 sin2x0 = -4/5

    根号3 cos2x0 - sin2x0 = -8/5 .(4)

    (3)+(4)*根号3得:

    cos2x0+3cos2x0 = 6/5 -8根号3/5

    4cos2x0= 6/5 -8根号3/5

    cos2x0= 3/10 - 2根号3 /5

    求cos2x0