(1)和(2):
先求 f(1) = f(2/2) = f(2) - f(2) = 0
f(1/x) = f(1) - f(x) = -f(x)
f(x²)= f(x/(1/x)) = f(x) - f(1/x) =f(x) - (-f(x)) =2f(x)
(3) 先求出谁的函数值等于2,由(1)就直接知道
2 = 2f(2) = f(2²) = f(4)
由于 f(1) =0,f(2) =1,f(x)为单调函数,可见其为单调增函数,
所以 (2)就等于说
f(x/(x+3)) ≤ f(4)
即
x/(x+3) ≤ 4
解些不等式即可,不过这个好像是 全部 (0,+∞)