3、问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:
①如图1,在正三角形ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图2,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类比的思想提出了如下命题;
③如图3,在正五边形ABCDE中,M,N分别是CD,DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:
(1)请你从①,②,③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
①如图4,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图5,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.
你是解此题吗?答案为:
连接BE AC
可以证明,正五边形各内角为108度
∠NOM+∠BON=∠NOM+108度=∠NOM+∠NEM=180度
又四边形NOME内角和360度
所以∠ENO+∠EMO=360度-(∠NOM+∠NEM)=360度-180度=18度0
有∠ANC+∠ENO=180度
所以∠EMO=∠ANC
正五边形中易证明BE=AC,∠EAC=∠BEM
ΔANC≌ΔEMB
所以有BM=CN
如果不是上题,根据你的题意,∠BON取值在72~144度之间