直线y=kx+m①与圆x^2+y^2=1相切,
所以|m|/√(k^2+1)=1,
所以m^2=k^2+1.
把①代入x^2-y^2=1得x^2-(k^2x^2+2kmx+m^2)=1,
(1-k^2)x^2-2kmx-m^2-1=0,
△=4k^2m^2+4(1-k^2)(m^2+1)=4(m^2+1-k^2)=8,
左右交点P1(x1,y1),P2(x2,y2)满足x1
直线y=kx+m①与圆x^2+y^2=1相切,
所以|m|/√(k^2+1)=1,
所以m^2=k^2+1.
把①代入x^2-y^2=1得x^2-(k^2x^2+2kmx+m^2)=1,
(1-k^2)x^2-2kmx-m^2-1=0,
△=4k^2m^2+4(1-k^2)(m^2+1)=4(m^2+1-k^2)=8,
左右交点P1(x1,y1),P2(x2,y2)满足x1