过B点做AC的垂线,BF,延长BF与圆的交点为G,BG通过圆心.
设:AB=BC= x,BF= y
∵COS∠FBE = COS∠DBG
∴BF/BE = BD/BG
∴y/2 = 6/BG
∴BG= 12/y
∵COS∠CBF = COS∠CBG
∴BF/BC = BC/BG
∴y/x = x/(12/y)
x2 = 12
x = 2√3
过B点做AC的垂线,BF,延长BF与圆的交点为G,BG通过圆心.
设:AB=BC= x,BF= y
∵COS∠FBE = COS∠DBG
∴BF/BE = BD/BG
∴y/2 = 6/BG
∴BG= 12/y
∵COS∠CBF = COS∠CBG
∴BF/BC = BC/BG
∴y/x = x/(12/y)
x2 = 12
x = 2√3