用a^2 表a的平方
(a^2+b^2+c^2)^2 =a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2 c^2 ...(1)
(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc=0 .(2)
2ab+2ac+2bc=0-a^2-b^2-c^2=-4
ab+ac+bc=-2 .(3)
(ab+ac+bc)^2=(ab)^2+(ac)^2+(bc)^2 +2ab*ac +2ab*bc+2ac*bc
=(ab)^2+(ac)^2+(bc)^2 +2 abc(a+b+c)=4
所以(ab)^2+(ac)^2+(bc)^2 =4
所以a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+a^2c^2+b^2c^2)=16-2*4=8